mnar()
presents the statistics from mar()
and mcar()
. If at least one
p-value in mar()
is not significant, and the p-value in mcar()
is
significant then the data is MNAR.
Details
There exists no formal test for MNAR data. This function therefore
presents the statistics for the tests in mar()
and mcar()
. If the
results suggest the data is neither MAR nor MCAR, one can use process of
elimination to deduce that the data is MNAR.
Examples
mnar(companydata)
#> Warning: essentially perfect fit: summary may be unreliable
#> Warning: essentially perfect fit: summary may be unreliable
#> $mcar
#> # A tibble: 1 × 4
#> statistic degrees_freedom p_val missing_patterns
#> <dbl> <dbl> <dbl> <int>
#> 1 22.7 11 0.0197 4
#>
#> $mar
#> # A tibble: 2 × 6
#> missing p_value explanatory p_values variables combined
#> <chr> <dbl> <chr> <named list> <named list> <named list>
#> 1 product_rating 0.103 product_rating <dbl [5]> <chr [5]> <dbl [5]>
#> 2 employees 0.0128 gross_profit <dbl [5]> <chr [5]> <dbl [5]>
#>